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For the horizontal generating functions Pn (z)=�n
k=1 S(n, k) zk of the Stirling

numbers of the second kind, strong asymptotics are established, as n � �. By using
the saddle point method for Qn (z)=Pn (nz) there are two main results: an oscillat-
ing asymptotic for z # (&e, 0) and a uniform asymptotic on every compact subset
of C"[&e, 0]. Finally, an Airy asymptotic in the neighborhood of &e is deduced.
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1. INTRODUCTION AND SUMMARY

This paper contains asymptotic expansions for the horizontal generating
function of the Stirling numbers of the second kind S(n, k), which are
defined by the following double generating function (see [3, p. 50]):

exp[z(eu&1)]=: 1+ :
1�k�n<�

S(n, k)
un

n !
zk, z, u # C. (1.1)

The horizontal generating functions Pn (z) are the coefficients of the power
series

exp[z(eu&1)]=: 1+ :
�

n=1

Pn (z)
n !

un, z, u # C,

that gives

Pn (z)= :
n

k=1

S(n, k) zk=
n !
2?i |#0

exp[z(et&1)]
tn+1 dt, (1.2)
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with #0 a simple closed curve with positive orientation encircling 0. In con-
trast to the vertical generating function and to the corresponding functions
of the Stirling numbers of the first kind, whose particular sums can be com-
puted exactly (see [3, pp. 206, 212]), there is no comparative result for the
function Pn . Therefore, it is interesting to at least deduce some asymptotic
results. Concerning asymptotic characteristics only the case Pn (1), the so-
called Bell number, has been investigated so far (see [1], [2, pp. 102�108],
[3, pp. 296�297], [6]). Moreover, there is one result respecting the zeros
of Pn . These are simple, real, and not greater than 0 (see [3, p. 271]). In
this work, we deduce two asymptotic expansions for Pn with the help of the
saddle point method, which requires that the saddle point and the
parameter n are independent of each other. This leads to the function

Qn (z) :=Pn (nz)

=
n !
2?i |#0

e&n(ln t&z(e t&1)) dt
t

, n # N, z # C. (1.3)

In accordance with asymptotic results for the classic orthogonal polyno-
mials, see for example the Hermite polynomials [8, p. 201], we obtain the
following asymptotics of the Plancherel�Rotach-type:

(i) With , # (0, ?) there is the oscillating asymptotics

Qn \&
sin ,

,
e, cot ,+=kn (,) \sin \n \?&,+

sin2 ,
, ++'(,)++O \1

n++ ,

with kn (,)>0 and '(,) bounded by ?
2 and ? (see Theorem 3.1).

(ii) With z # C"[&e, 0] and w # A, zwew=1, A :=[w # C"[0]:
w> &1 or w=a+ib, b # (&?, ?)"[0], a>&b cot b] it holds that

Qn (z)=
n !

- 2?n

1
wn exp {n

w
(1&e&w)= (1+w)&1�2 \1+O \1

n++ ,

where the O-term holds uniformly on every compact subset of C"[&e, 0]
(see Theorems 3.2 and 3.3).

In addition, we investigate the turning point &e, which occurs in the
interval in (i) by tending , � 0. Thereby, we get an Airy-asymptotics,
which is called a strong asymptotics, as well as the above mentioned
asymptotics.

In addition to this work, the position of the zeros of Qn is investigated
in [4].
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2. AUXILIARY RESULTS

2.1. Technical Lemmas

Lemma 2.1. (i) Let . be in (0, ?
2); then 1< .

sin .< ?
2 .

(ii) Let . be in (0, ?) and : in [0, ?&.]; then cos : .
sin .>&1.

Proof. Both (i) and (ii) can be easily checked. K

Lemma 2.2. Let a, b be in R, a<b, f : [a, b] � R, f # C2[a, b] with
f (a)� f (b) and f "(x)<0 for all x in (a, b); then for all x in (a, b) f (x) is
greater than f (b).

Proof. It is f "(x)<0 for all x in (a, b); i.e. f is strictly concave on
[a, b]. If we assume that there is an x0 in (a, b) with f (x0)� f (b), there is
also a * in (0, 1) satisfying:

f (b)� f (x0)= f (*a+(1&*) b)>*f (a)+(1&*) f (b)� f (b).

This is a contradiction and thus the lemma is proved. K

2.2. The Solution of the Saddle Point Equation
To apply the saddle point method to the integral (1.2) it is required (see

[7, p. 127]) that the derivative of p(t)=ln t has a simple zero on the curve
#0 . Because this is not possible, the function Qn (z)=Pn (nz) is introduced.
By (1.3) this leads to

p(t)=ln t&z(et&1) and p$(t)=
1
t
&zet; (2.1)

the logarithm will be defined below. To determine t with p$(t)=0, which is
equivalent to solving the equation ztet=1 with z # C"[0], we refer to [5],
where a similar problem (namely to solve z(t&1) et=1) is discussed in
detail. The obtained solutions and characteristics can be transferred easily
and so the following results hold:

Lemma 2.3. Define

A :=[w # C"[0]: w>&1 or w=a+ib, b # (&?, ?)"[0], a>&b cot b],

1+ :=�A & [w # C : I(w)>0],

1& :=�A & [w # C : I(w)<0],

1 :=�A"[0]=1+ _ 1& _ [&1] and 9: A� "[0] � C,

9(w) :=
1
w

e&w, then:
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(i) The equation x=9(w), x # (&e, 0), has exactly two solutions
w=a\ib, w # A� , which satisfy

(a) a> &1, b # (0, ?), a=&b cot b, a+ib # 1+ , a&ib # 1& ,

(b) x=h(b) :=& sin b
b eb cot b,

(c) limb � 0 h(b)=&e, limb � ? h(b)=0, h(b) is increasing strictly,
b # (0, ?),

(d) with x # (&e, 0) a=a(x) is increasing strictly, a((&e, 0))=
(&1, �), and b=b(x) is increasing strictly, b((&e, 0))=(0, ?),

(e) w # 1+ , w=a+ib, or w # 1& , w=a&ib, satisfies |w| 2= b2

sin2 b .

(ii) 9 maps A conformally onto C"[&e, 0].

(iii) 9 maps both 1+ and 1& one-one onto (&e, 0).

Proof. See [5, pp. 346�350]. K
Due to these results, an inverse function 8: C"[&e, 0] � A _ 1+ of 9

can be defined (see Fig. 1):

8(z) :={w, w # A, zwew=1,
w, w # 1+ , zwew=1,

z # C"[&e, 0]
z # (&e, 0).

(2.2)

The function 8 is analytic on C"[&e, 0] and maps C"[&e, 0] confor-
mally onto A. Especially, it holds for 8((&�, &e))=(&1, 0) and
8((0, �))=(0, �). Further, 8 solves the saddle point equation:

Lemma 2.4. For z # C"[&e, 0] p$(t) has a simple zero at w=8(z).

FIG. 1. The domain A.
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Proof. Because of (2.2), p$(w)=0, so we have to show p"(w){0:

p"(w)=&
1

w2&zew=&
1
w \1

w
+1+{0, because &1 � A _ 1+ . K

For z # (&e, 0) we introduce a parametrization (compare Lemma
2.3(i)(a), (b))

z=x(,) :=&
sin(,)

,
e, cot ,, , # (0, ?), (2.3)

so that w is given as:

w=w(,) := &, cot ,+i,=&
,

sin ,
e&i,=

,
sin ,

ei(?&,). (2.4)

The next problem is to determine a curve #0 having w as an interior point
and satisfying the condition (see [7, p. 127]) that the real part of
p(t)& p(w) is positive for all t # #0"[w]. We will prove that #0 may be
chosen as a circle for z in the cut plane C"[&e, 0] and as a semi-circle for
z # (&e, 0).

3. PLANCHEREL-ROTACH ASYMPTOTICS

3.1. The Oscillating Asymptotics

For z # (&e, 0), from (1.3) we get the representation

Qn (z)=
n !
2?i |#0

e&n(ln t&z(e t&1)) dt
t

=
n !
?

I {|#
0
+

e&n(ln t&z(et&1)) dt
t = , (3.1)

with #+
0 the upper half of the circle with radius |w| and ln t=ln |t|+iph(t),

ph(t) # [0, ?]. If we want to apply the saddle point method to (3.1), we
have to verify the real part condition, i.e., R[ p(t)& p(w)] is greater than
0 for all t # #+

0 . By using (2.3) and (2.4) with r(,)= ,
sin , , t=t(�) :=r(,) ei�,

� # [0, ?], w(,)=t(?&,), and R(�) :=R[ p(t(�))& p(t(?&,))] we will
prove that R(�) is greater than 0 for all � # [0, ?]"[?&,].
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(a) Computation of R(�) and R$(�)= dR(�)
d� :

R(�)=R[ p(t(�))& p(t(?&,))]

=R[ln(r(,) ei�)&x(,) er(,) e i�
&ln(r(,) ei(?&,))+x(,) er (,) ei (?&,)]

= &x(,) er(,) cos � cos(r(,) sin �)&
1

r(,)
cos(,). (3.2)

That gives:

R$(�)=&x(,) er(,) cos �r(,)(&sin �) cos(r(,) sin �)

&x(,) er(,) cos � (&sin(r(,) sin �)) r(,) cos �

=x(,) er(,) cos �r(,) sin(�+r(,) sin �). (3.3)

With f (�) :=�+r(,) sin � and g(�) :=x(,) er(,) cos �r(,) we have:

R$(�)=g(�) sin( f (�)),

g(�)<0 for all � # [0, ?] and (3.4)

R$(�)=0 if and only if f (�)=k?, k # N0 .

(b) Proof that R(�) is greater than 0 for all � in [0, ?&,): Because
f (0)=0, f (?&,)=?, and f $(�)=1+ ,

sin , cos �>0 for � # (0, ?&,) (cf.
Lemma 2.1(ii)), by using (3.4) it follows that R$(�)<0 for � # (0, ?&,).
Since R(?&,)=0, the allegation is proved.

(c) Proof that R(�) is greater than 0 for all � in (?&,, ?]:

Case 1. ,� ?
2 . It is sufficient to show that f (�) # (?, 2?), for � #

(?&,, ?), then from (3.4) it follows that R$(�)>0 for � # (?&,, ?). First,
by Lemma 2.1(i) it holds that f (�)=�+r(,) sin �<?+ ?

2<2?. On the
other hand it holds that f (?&,)= f (?)=?, f $(�)=1+cos � ,

sin , and
f "(�)=&sin � ,

sin ,<0 for � # (?&,, ?). And thus Lemma 2.2 gives
f (�)>?.

Case 2. ,> ?
2 . Because R(?)=x(,) er(,)(&1)cos(0)& 1

r(,) cos(,)>0 and
R(?&,)=0, it is sufficient to show that

R(�0)>0, for all �0 # N, N :=[� # (?&,, ?) : R$(�)=0].

Since f (�0)>0 and by (3.4), it follows that for �0 # N f (�0) # [k?: k # N]
if and only if there is a k0 # N with �0+r(,) sin �0=k0 ?, i.e.
r(,) sin �0=k0 ?&�0 .
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:. �0 # (?&,, ,), by (3.2) it follows that

R(�0)=&x(,) er(,) cos �0 cos(r(,) sin �0)+x(,) er(,) cos(?&,) cos ,

=x(,) er(,) cos(?&,) cos ,

&x(,) er(,) cos �0 {cos �0 ,
&cos �0 ,

k0=2m, m # N

k0=2m&1, m # N

=x(,) \er(,) cos(?&,) cos ,&er(,) cos �0 { cos �0

&cos �0 =+>0,

because cos(?&,)=&cos ,>|cos �0 |�0, �0 # (?&,, ,), ,> ?
2 .

;. �0 # [,, ?). This case does not exist, because N & [,, ?) is empty,
which is proved as follows:

First, it holds that f (,) = , + r(,) sin , = 2,>?, f (?) = ? and f "(�)=
&r(,) sin �<0 for � # (,, ?). Then Lemma 2.2 with a=, and b=? gives:

f (�)> f (?)=?, for all � # [,, ?).

Second, for � # [,, ?) it follows that

f (�)=�+
sin �
sin ,

,<?+1?=2?.

That means that f (�) # (?, 2?) for � # [,, ?) and it follows by (3.4) that
R$(�){0. K

Thus the real part condition is accomplished and the saddle point
method may be applied.

Theorem 3.1. Let x(,) be defined by (2.3). Then for , # (0, ?), as
n � �,

Qn (x(,))=kn (,) \sin \n \?&,+
sin2 ,

, ++'(,)++O \1
n++ ,

with arccos: [&1, 1] � [0, ?], ': (0, ?) � ( ?
2 , ?), kn (,): (0, ?) � (0, �) and

kn (,) :=
n !

- ?n
- 2 e&n(ln(,�sin ,)+x(,)+((sin , cos ,)�,))

_\\ ,
sin ,

&cos ,+
2

+sin2 ,+
&1�4

'(,) :=
?
2

+
1
2

arccos \ 1&, cot(,)
((1&, cot(,))2+,2)1�2+ .
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Proof. According to [7, p. 127] with (2.4), (3.1), and Lemma 2.4 we
obtain

Qn (x(,))=
n !
?

I {|#
0
\

e&n(ln t&x(,)(et&1)) dt
t =

=
n !
?

I {2e&np(w(,)) 1

- n \1 \1
2+ a0+O \1

n++= ,

with a0=(w(,) - 2p"(w(,)))&1 and |0 :=ph( p"(w(,))) satisfying ||0+2||
� ?

2 , where | is the limiting value of ph(t&w(,)) as t � w(,) along (w(,),
&|w(,)| ), which means the part of #+

0 between &|w(,)| and w(,).

(a) Computation of p(w(,)) gives:

p(w(,))=p(t(?&,))=ln t(?&,)&x(,)(et(?&,)&1)

=ln r(,)+i(?&,)+x(,)

+
sin ,

,
e, cot ,e(,�sin ,)(cos(?&,)+i sin(?&,))

=ln
,

sin ,
+x(,)+

sin , cos ,
,

+i \?&,+
sin2 ,

, + . (3.5)

(b) With t � w(,) along (w(,), &|w(,)| ), | is given by:

|= lim
t � w(,)

ph(t&w(,))= lim
� � (?&,), �>(?&,)

ph(r(,)(ei�&ei(?&,)))

=?&,+ lim
= � 0, =>0

ph(ei=&1)= 3
2 ?&,. (3.6)

(c) Since x(,) w(,) ew(,)=1 and due to Lemma 2.4, |0 is computed
as follows,

|0 =ph( p"(w(,)))=ph \&
1

w(,)2 (1+w(,))+
=ph \e&i?e&2i(?&,)

(r(,))2 ++ph(1+w(,))=&3?+2,+ph(1+w(,)),

and since R(w(,))>&1, the condition ||0+2||� ?
2 is satisfied. With

w(,)=r(,) ei(?&,) and arccos : [&1, 1] � [0, ?], |0 holds further:

|0=&3?+2,+arccos \ 1&, cot(,)
((1&, cot(,))2+,2)1�2+ . (3.7)
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(d) Computation of a0 gives:

a0 =(w(,) - 2p"(w(,)))&1

=
1

- 2

e&i(?&,)

r(,)
e&i(|0 �2) } 1

r(,) ei(?&,) \ 1
r(,) ei(?&,)+1+}

&1�2

=
1

- 2
e&i(?&,+(|0 �2)) |e&i(?&,)+r(,)| &1�2

=
1

- 2
e&i(?&,+(|0 �2)) _\ ,

sin ,
&cos ,+

2

+sin2 ,&
&1�4

. (3.8)

Altogether, from (3.5), (3.7), and (3.8) we obtain:

Qn (x(,))=
n !

- ?n
I {2e&n(ln(,�sin ,)+x(,)+((sin , cos ,)�,)+i(?&,+(sin2 ,�,)))

_\ 1

- 2
e&i(?&,+(|0 �2)) _\ ,

sin ,
&cos ,+

2

+sin2 ,&
&1�4

+O(n&1)+=
=

n !

- ?n
- 2 e&n(ln(,�sin ,)+x(,)+((sin , cos ,)�,))

__\ ,
sin ,

&cos ,+
2

+sin2 ,&
&1�4

_\sin \,&?&
|0

2
&n \?&,+

sin2 ,
, +++O(n&1)+

=
n !

- ?n
- 2 e&n(ln(,�sin ,)+x(,)+((sin , cos ,)�,))

__\ ,
sin ,

&cos ,+
2

+sin2 ,&
&1�4

\sin \n \?&,+
sin2 ,

, +
+

?
2

+
1
2

arccos \ 1&, cot(,)
((1&, cot(,))2+,2)1�2+++O(n&1)+ . K

3.2. The Asymptotics on the Cut Plane
For z # C"[&e, 0] we will apply the saddle point method to (1.3).

Therefore we will choose #0 as a circle with radius |w|. The logarithm is
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defined by ln t=ln |t|+iph(t) with ph(t) # [0, 2?] for z # C"[&e, �) and
ph(t) # [&?, ?] for z # (0, �).

First, we have to prove the real part condition again; i.e., R[ p(t)&
p(w)] is greater than 0 for all t # #0 "[w]. With w=rei:, r>0, : # [0, 2?),
w # A, r<rmax := ?&:

sin : for : # (0, ?) _ (?, 2?) (r<rmax :=1 for :=?) and
t=t(�)=rei�, � # [0, 2?], for : # (0, 2?) ([&?, ?] for :=0), we have to
show that R(�) :=R[ p(t(�))& p(w)] is greater than 0 for all �{:.

By (2.1) and zwew=1 computation of R(�) gives:

R(�)=R[&zet(�)+zew]=R {1
r

e&i: (1&er(ei�&ei:))=
=

1
r

cos :&
1
r

er(cos �&cos :) cos(:&r(sin �&sin :)). (3.9)

If :=0 the allegation follows directly from (3.9). For :{0 we define

f (r, �) :=er(cos �&cos :) cos(:&r(sin �&sin :)),

G :=[(r, �) # R2 : 0<r<rmax , � # (0, 2?+=)]

with 0<=<min[:, 2?&:],

Q :=[(r0 , �0) # G� : f (r0 , �0)� f (r, �) for all (r, �) # G� ], and

M :=[(r, �) # G� : r=0 or r=rmax , � # [:, 2?&:] or �=:].

Hence, it is sufficient to show that f (r, �)=cos : for all (r, �) # M and
Q/M. The first condition can be easily checked, and thus we only have
to prove Q/M. For (r

*
, �

*
) # Q it follows directly that f (r

*
, �

*
) is not

less than cos :. To show that (r
*

, �
*

) # M, we investigate in (a), (b), (c),
and (d) possible maximums on the edge of G and in (e) in the interior of G.

(a) r
*
=0. (r

*
, �

*
) # M follows immediately.

(b) r
*
=rmax . To show that �

*
# [:, 2? & :] we define g(�) :=

f (rmax , �), then

g(�)={e((?&:)�sin :)(cos �&cos :) cos \:&
?&:
sin :

(sin �&sin :)+ ,

ecos �&cos ? cos(?&(sin �&sin ?)),

: # (0, 2?)"[?]

:=?

={&e(:&?) cot :e(?&:�sin :) cos � cos \?&:
sin :

sin �+ ,

&e1+cos � cos(sin �),

: # (0, 2?)"[?]

:=?,
(3.10)

so we have to prove g(�)<cos : for all � # [0, 2?+=]"[:, 2?&:].
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(b1) : # (0, ?), � # [0, ?]"[:]. With :=: ?&,, , # (0, ?), it follows
from Section 3.1, especially (3.2), that g(�)<cos :.

(b2) : # (0,?), � # (?, 2?]"[2?&:]. By using . # [0, ?)"[:] with �=
2?&., it follows from (3.10) that g(�)= g(.) and hence by (b1), g(�)<
cos : for all � # (?, 2?]"[2?&:].

(b3) : # (0, ?), � # (2?, 2?+=]. By (b1) and the 2?-periodicity of
g it holds that g(�)<cos :.

(b4) :=?. By (3.10) we have to show that h(�) :=ecos � cos(sin �)
> 1

e for all � # [0, 2?+=]"[?]. Since h$(�)=&ecos � sin(�+sin �), the
function h has an absolute minimum in [0, 2?+=] at �=? and by
h(?)=e&1 the prove is completed.

(b5) : # (?, 2?). With :=2?&;, ; # (0, ?), it follows from (3.10)
that

g(�)=&e(;&?) cot ;e((?&;)�sin ;) cos � cos \?&;
sin ;

sin �+ .

Hence, we can deduce immediately from (b1)�(b3) that g(�)<cos : for all
� # [0, 2?+=]"[:, 2?&:].

(c) r
*

# (0, rmax), �
*
=0. By the 2?-periodicity of f with reference to

�, it follows that (r
*

, 2?) # Q also. This is investigated in (e).

(d) r
*

# (0, rmax), �
*
=2?+=. By the 2?-periodicity of f with

reference to �, it follows that also (r
*

, =) # Q. This is investigated in (e).

(e) r
*

# (0, rmax), �
*

# (0,2?+=). We assume: �
*

{:. Because
(r

*
, �

*
) # Q, (r

*
, �

*
) # G, and G is open, (r

*
, �

*
) must comply with:

�f (r, �)
�r

=
�f (r, �)

��
=0, (r, �)=(r

*
, �

*
). (3.11)

Computation of �f��r gives:

�f (r, �)
�r

=er(cos �&cos :) ((cos �&cos :) cos(:&r(sin �&sin :))

&sin(:&r(sin �&sin :))(&(sin �&sin :)))

=&2er(cos �&cos :) \sin \�&:+2r(sin �&sin :)
2 + sin \�&:

2 ++ .

That means fr (r
*

, �
*

)=0 if and only if �
*

&:=2k?, k # Z or �
*

&:+
2r

*
(sin �

*
&sin :)=2k?, k # Z.
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Case 1. �
*

&:=2k?, k # Z, by �
*

=:+2k?; it follows that

if k=0 : �
*

=:, contradiction to the assumption!

if k<0 : �
*

<0, contradiction to �
*

# G !

if k>0 : �
*

=2k?+:>2?+=, contradiction to �
*

# G !

Case 2. �
*

&:+2r
*

(sin �
*

&sin :)=2k?, k # Z; that means:

r
*

(sin �
*

&sin :)=k?+
:&�

*
2

. (3.12)

By

�f (r, �)
��

=er(cos �&cos :) ((&r sin �) cos(:&r(sin �&sin :))

&sin(:&r(sin �&sin :))(&r cos �))

=&rer(cos �&cos :) (sin(�&:+r(sin �&sin :))),

and (3.11), it follows that �
*

&:+r
*

(sin �
*

&sin :)=m?, m # Z, and
hence by (3.12), �

*
&:+k?+

:&�*
2 =m?. That means �

*
=:+2(m&k) ?

and we can deduce:

if m=k: �
*

=:, a contradiction to the assumption!

if m<k: �
*

<0, a contradiction to �
*

# G!

if m>k: �
*

>2?+=, a contradiction to �
*

# G !

Hence, we have shown that neither Case 1 nor Case 2 can occur and our
assumption must be wrong. K

Thus, the real part condition is accomplished and the saddle point
method may be applied.

Theorem 3.2. Let z be in C"[&e, 0] and 8(z)=w # A, zwew=1. Then,
as n � �:

Qn (z)=
n !

- 2?n

1
wn exp {n

w
(1&e&w)= (1+w)&1�2 \1+O \1

n++ .

Proof. According to [7, p. 127] and (3.1) it follows that

Qn (z)=
n !
2?i |#0

e&n(ln t&z(et&1)) dt
t

=
n !
?i

e&np(w) 1

- n \1 \1
2+ a0+O \1

n++ ,
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with a0=(w - 2p"(w))&1 and |0 :=ph( p"(w)) satisfying ||0+2||� ?
2 ,

where | is the limiting value of ph(t&w) as t � w along the part of #0

between w and the endpoint of #0 .

(a) By zwew=1 computation of p(w) gives:

p(w)=ln w&z(ew&1)=ln w&
1
w

+
e&w

w
. (3.13)

(b) With w=|w| ei: and t=|w| ei�, | is given by:

|= lim
t � w

ph(t&w)= lim
� � :, �>:

ph( |w| ei�&|w| ei:)

= lim
= � 0, =>0

ph( |w| ei: (ei=&1))=:+
?
2

. (3.14)

(c) By zwew=1, w=|w| ei:, and Lemma 2.4, |0 is computed as
follows

|0=ph( p"(w))=ph \&
1

w2 (1+w)+
=ph \e&i? 1

|w|2 e&2i: (1+w)+=&?&2:+ph(1+w), (3.15)

and since R(w)>&1, the condition ||0+2||� ?
2 is satisfied.

(d) Computation of a0 gives

a0 =(w - 2p"(|))&1=
1

- 2

e&i:

|w| }&
1

w2 (1+w)}
&1�2

e&(1�2) i|0

=
1

- 2
|1+w|&1�2 e i(?�2)e&(i�2) ph(1+w)=

i

- 2
(1+w)&1�2, (3.16)

with ln(1+w)=ln |1+w|+iph(1+w), |ph(1+w)|� ?
2 .

From (3.13), (3.15), and (3.16) we now obtain:

Qn (z)=
n !
?i

exp {&n \ln w&
1
w

+
e&w

w +=
_\�?

n
i

- 2
(1+w)&1�2+O(n&3�2)+

=
n !

- 2?n

1
wn exp {n

w
(1&e&w)= ((1+w)&1�2+O(n&1)). K
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The result of Theorem 3.2 can be strengthened: the asymptotics is valid
uniformly in every compact set K lying in C"[&e, 0].

Theorem 3.3. Let K be a compact subset of C"[&e, 0] and

Gn (z) :=
n !

- 2?n

1
wn exp {n

w
(1&e&w)= (1+w)&1�2,

z # C"[&e, 0], w=8(z).

Then Qn (z)�Gn (z) converges uniformly to 1 on K.

Proof. Since the saddle point method is a special application of
Laplace's method, the following proof is based on the proof of this method
(see [7, pp. 121�125]) with the difference that the function p(t) depends on
a parameter z besides:

p(z, t) :=ln t&z(et&1), t # C"[0], z # K.

The branch of the logarithm must be chosen in a suitable way, so that p
is analytic in the sets appearing below (therefore K has to be split into two
compact sets, if necessary). Further, we must mention that if s is odd, the
coefficients used below as disappear when the Laplace method is replaced
by the saddle point method. This happens because a different |0 (see
(3.15)) has to be chosen (compare with the variable v introduced below
with ph(v)=|0).

(a) Because z # K, K compact, there is an M1>0 with |w|&1=
|8(z)|&1�M1 for all z # K. Further, the functions p and q(t)=t&1 have the
following power series representations in a neighborhood of w:

p(z, t)=p(z, w)+ :
�

s=0

ps (z)(t&w)s++, +=2,

ps (z)=
1

(s+2)!
�(s+2)p
�t(s+2) (z, w),

�sp
�ts (z, w)=

(&1)s&1 (s&1)!
ws &

1
w

,

q(t)= :
�

s=0

qs(t&w)s+*&1, qs=
(&1)s

ws+1 , *=1. (3.17)

Hence, we obtain the following estimations for | ps (z)| and | p0 (z)|, which
hold for all z # K:
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| ps (z)|�
1

(s+2)!
((s+1)! M s+2

1 +M1)�(M1+1)s+2=: M s+2
2 , (3.18)

| p0 (z)|= } 12 \&
1

w2&
1
w+}�M3>0, (3.19)

1
| p0 (z)|

�M4 , M4 :=max {1,
1

M3 = . (3.20)

(b) We set u= g(z, t) :=- p(z, t)& p(z, w) with ln u=ln |u|+iph(u),
ph(u) # [&?, ?); then (3.17) gives:

u=\ :
�

s=0

ps (z)(t&w)s+2+
1�2

=\p0 (z)(t&w)2 \1+ :
�

s=1

ps (z)
p0 (z)

(t&w)s++
1�2

=- p0 (z) (t&w) \1+ :
�

k=1
\1�2

k +\ :
�

s=1

ps (z)
p0 (z)

(t&w)s+
k

+
=- p0 (z) (t&w)

_\1+ :
�

m=1

(t&w)m \ :
m

k=1
\1�2

k + :

&i�1
&1+ } } } +&k=m

`
k

i=1

pvi
(z)

p0 (z)++ .

(c) Let g(z, t)=��
m=0 gm (z)(t&w)m+1; then there is an M6 greater

than 0 with | gm (z)|�M2M m
6 for all z # K.

Proof. The case m=0 follows immediately from g0 (z)=- p0 (z) and
(3.18), so we consider m # N, 1�k�m. By (3.18) and (3.20) it follows that

} `
k

i=1

pvi
(z)

p0 (z) }� `
k

i=1

M &i+2
2 M4�M k

4 M m+2k
2 �(M4 M 3

2)m=: M m
5 .

Since |( 1�2
k )|�1 and �&1+ } } } +&k=m, &i�1 1=( m&1

k&1 ), we obtain:

| gm (z)|= }- p0 (z) :
m

k=1
\1�2

k + :

&i�1
&1+ } } } +&k=m

`
k

i=1

pvi
(z)

p0 (z) }
�M2 :

m

k=1 \
m&1
k&1+ M m

5

=M2M m
5 :

m&1

k=0
\m&1

k +�M2 (2M5)m=: M2 M m
6 . (3.21)
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Especially, we can conclude that g(z, t) converges in the circle [t: |t&w|<
M&1

6 ] for all z # K.

(d) We define n0 :=max[3, 1+3M2 (M3)&1�2]; then for all z in K
g(z, t) maps [t: |t&w|<(n0 M6)&1] conformally onto a domain U with
0 # U.

Proof. Let z be in K, |ti&w|<(n0M6)&1, i=1, 2, t1 {t2 ; then by
(3.19) and (c) it follows that | g(z, t1)& g(z, t2)|

= }g0 (z)(t1&t2)+(t1&t2) :
�

m=2

gm&1 (z)
(t1&w)m&(t2&w)m

(t1&w)&(t2&w) }
= }g0 (z)(t1&t2)+(t1&t2) :

�

m=2

gm&1 (z) :
m&1

&=0

(t1&w)m&1&& (t2&w)&}
�|t1&t2 | \- M3 & :

�

m=2

M2 M m&1
6 m \ 1

n0 M6+
m&1

+
=|t1&t2 | \- M3 &M2

2n0&1
(n0&1)2+

>|t1&t2 | \- M3 &3M2

1
n0&1+�0,

because n0�1+
3M2

- M3

.

(e) Since 8(K) is compact, we can choose 0<R�(2n0 M6)&1 so that
[t : |t&w|�R] is contained in A"[0]. Further, we define:

DR (z) :=[t: t=w+Rei�, � # [0, 2?]],

L(z) :=g(z, DR (z))=[u: u= g(z, t), t # DR (z)], and

r(z) :=dist(L(z), 0)=min[ |u|: u # L(z)].

Since r is continuous on K and positive, there is an r0 greater than 0 with
r0=min[r(z) : z # K]. So the set [u : |u|<r0] lies in the interior of L(z) for
all z in K. Therefore, we can deduce that for all z in K there exists a
$(z)>0 satisfying | g(z, wei$(z))|=r0 , |w(ei$(z)&1)|�R, and | g(z, wei�)|<r0

for all � # [0, $(z)). Finally, we set $0>0 with $(z)�$0 for all z in K.

(f ) Now, we define k(z) :=wei$0 and }(z) :=g(z, k(z))2, so we see
that }(z) is continuous on K and R(}(z)) is greater than 0 for all z in K.
Considering the real part condition, there must be a }0 and a }max with:

}0>0, }0=min[R(}(z)): z # K], (3.22)

}max>0, }max=max[ |}(z)|: z # K]. (3.23)
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(g) For z in K we get (see [7, p. 123, set n=2 and z=n]),

|
k(z)

w
e&np(z, t)q(t) dt=e&np(z, w) |

}(z)

0
e&nvf (v) dv,

with v=u2=(g(z, t))2, f (v)=q(t) dt
dv=q(t)��p(z, t)

�t and

f (v)= :
1

s=0

asv(s&1)�2+- v f2 (v), f2 (v)=O(1), v � 0.

So we deduce:

|
}(z)

0
e&nvf (v) dv= :

1

s=0

1 \s+1
2 + as

n(s+1)�2&=2, 1 (n, z)+=2, 2 (n, z).

The error terms can be estimated uniformly:

(g1) As mentioned above, the coefficient a1 does not have to be
taken into account, so it follows that =2, 1 (n, z)=1( 1

2 , }(z) n) (q0 �- 2p0 )
1�- n. Further, the incomplete gamma function holds:

1( 1
2 , }(z) n)=|

�

}(z) n
e&tt&1�2 dt=e&}(z) n |

�

}(z) n
e&(t&}(z) n)t&1�2 dt

=e&}(z) n |
�

0
e&x(x+}(z) n)&1�2 dx.

By (3.22) we obtain |1(1
2 , }(z) n)|�e&}0n (}0)&1�2, and by (3.20), |=2, 1 (n, z)|

�e&}0n (}0)&1�2 M1 (
M4
2 )1�2 1�- n; that means

=2, 1 (n, z)=
1

- n
O(e&}0n) (3.24)

and the O-term holds uniformly for all z in K.

(g2) Because f2 (v)=v&1�2 ( f (v)&�1
s=0 as v(s&1)�2)=��

s=2 asv(s�2)&1

and f2 (v)=O(1), v � 0, there must be an M7 greater than 0 with
| f2 (v)|�M7 for all z in K, |v| less than r2

0 , and it follows that

|=2, 2 (n, z)|= } |
}(z)

0
e&nvv1�2f2 (v) dv }

= }}(z)
1

n3�2 |
n

0
e&}(z) x(}(z))1�2 x1�2f2 \}(z) x

n + dx }
�(}max)3�2 n&3�2 |

�

0
e&}0 xx1�2M7 dx=: M8 n&3�2;
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that means

=2, 2 (n, z)=O(n&3�2), (3.25)

and the O-term holds uniformly for all z in K.

(g3) The final error to calculate is the value of the integral along
the arc of the semicircle from wei$0 to &w. The function g~ (z, �) :=
R( p(z, wei�)& p(z, w)) is continuous on K_[$0 , ?] and we deduce from
the real part condition that there is an M9 greater than 0 with g~ (z, �) not
less than M9 for all (z, �) in K_[$0 , ?]. So we get

} |
&w

k(z)
e&np(z, t)q(t) dt }= } e&np(z, w) |

&w

k(z)
e&n( p(z, t)& p(z, w))q(t) dt }

�|e&np(z, w) | e&nM9M1 } |
&w

k(z)
1 dt }

�|e&np(z, w) | e&nM9M1M10 ,

with M10 greater than 0. Altogether, we obtain

|
&w

k(z)
e&np(z, t)q(t) dt=e&np(z, w)O(e&nM9), (3.26)

where the O-term holds uniformly for all z in K again.

(h) From Theorem 3.2 and (3.24), (3.25), (3.26), and (3.16) we
finally obtain:

Qn (z)=Gn (z)(1+O(e&}0n)+O(n&1)+- n O(e&nM9))

=Gn (z)(1+O(n&1)).

The O-term holds uniformly for all z in K and so the proof is completed. K

3.3. The Airy-asymptotics

Finally, we give an Airy-asymptotics for Qn as z � &e:

Theorem 3.4. Let zn=&e(1&(6n2)&1�3 s), s # C, then, as n � �,

Qn (zn)=
n !
?

(&1)n exp {(e&1) \n&\n
6+

1�3

s+=\6
n+

1�3

_(A(s)+O(n&1�3)),
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FIG. 2. The path of integration for the Airy-asymptotics.

where A(s) is Airy's function. A(s) is an entire function given by

A(s)=
1

2?i |L
exp {1

3
t3&st= dt, s # C,

where L is any contour which begins at infinity in the sector &?
2<ph(t)<

& ?
6 and ends at infinity in the sector ?

6<ph(t)< ?
2; see [9, p. 90] and [8,

p. 377]. Further, the O-term holds uniformly for s in K, K compact.

Proof. The result can be proved in a similar way as in [8, pp. 232�235]
for Laguerre polynomials. The main difference is the path of integration #0 ,
which should be chosen here in the following way (see Fig. 2):

Let % be in (0, 1
12), t+=t+(n) :=&1+(6n&1)1�3 n%e?i�3, :+ :=ph(t+) #

(0, ?), t&=t& (n) := &1+(6n&1)1�3 n%e&?i�3, :& :=ph(t&) # (?, 2?) and
rn :=|t+ |. Further we define

#0 :=#1+#2+#3+#4 ,

#1 :=[t: |t|=rn , ph(t) # [0, :+]],

#2 :=[t: t=&1&(6n&1)1�3 e?i�3p, p # [&n%, 0]],

#3:=[t: t=&1+(6n&1)1�3 e&?i�3p, p # [0, n%]], and

#4 :=[t: |t|=rn , ph(t) # [:& , 2?]].

The rest of the proof is quite similar to that mentioned above with the only
difference that the calculations for #2 and #3 lead to the Airy function. K
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